
 fdsfdsddfdd

 composable-security.com

 1. Contents
 1. Contents 1

 2. Retest (2023-02-10) 3

 3. Executive summary 6
 3.1. Audit results diagram (2022-01-06) 6
 3.2. Audit results 6

 4. Project details 8
 4.1. Projects goal 8
 4.2. Agreed scope of tests 8
 4.3. Threat analysis 8
 4.4. Testing methodology 9
 4.5. Disclaimer 9

 5. Findings overview 11

 6. Vulnerabilities 13
 6.1. Use of spot reserves in DEX pool 1 3
 6.2. No access control in withdrawFor function 15
 6.3. Unauthorized mint of staking contract tokens 16
 6.4. Invalid amount of burnt tokens in staking contract 17
 6.5. Theft of rewards and denial of service via unauthorized schedule of staking
 period 18
 6.6. Instant change of sensitive protocol parameters 20
 6.7. Inability to handle all ERC20 tokens 21
 6.8. Inconsistent deposit variables values 22
 6.9. Lack of parameters validation 23
 6.10. Invalid value of locked amounts variable 24
 6.11. Invalid update of current period reward 25
 6.12. Invalid value of collected rewards variable 26

 7. Recommendations 28
 7.1. Do not import whole contracts for simple calculations 28
 7.2. Remove nonReentrant modifier for the functions without external calls 29
 7.3. Remove unused inheritance 30
 7.4. Consider using the specific solidity version 30
 7.5. Monitor and update draft version contracts 31
 7.6. Use consistent variable naming 32
 7.7. Make variables’ names self-explanatory 32
 7.8. Favor pull over push 33
 7.9. Get the block.timestamp directly instead of using the view function 34

 1

 composable-security.com

 8. Impact on risk classification 3 5

 9. Long-term best practices 3 6
 9.1. Use automated tools to scan your code regularly 3 6
 9.2. Perform threat modeling 3 6
 9.3. Use Smart Contract Security Verification Standard 3 6
 9.4. Discuss audit reports and learn from them 3 6
 9.5. Monitor your and similar contracts 3 6

 10. Contact 3 7

 2

 composable-security.com

 2. Retest (2023-02-10)

 Scope

 The retest scope included the same contracts, on a different commit in the same
 repository.

 GitHub repository:
 https://github.com/codefunded/smartcontracts/
 CommitID :
 864b85d57f7c1e3b245cf1773e0d1fc79edc45fc

 Results diagram

 Results

 The Composable Security team was involved in a one-time iteration of verification
 whether the vulnerabilities detected during the tests were removed correctly and no
 longer appear in the code.

 Previous security review was carried out 2023-01-06. Verified fixes have been made in the
 following repository:

 GitHub repository:
 https://github.com/codefunded/smartcontracts/

 3

https://github.com/codefunded/smartcontracts/
https://github.com/codefunded/smartcontracts/

 composable-security.com

 CommitID :
 864b85d57f7c1e3b245cf1773e0d1fc79edc45fc

 ● All 3 critical vulnerabilities have been fully removed from the project.
 ● All 2 major vulnerabilities have been fully removed from the project.
 ● One medium vulnerability has been fully removed . The transfer of ownership is

 included in the deployment script.
 ● All 6 vulnerabilities with a minor impact on risk have been fixed.
 ● Nine security recommendations were handled as follows:

 ○ 7 have been implemented,
 ○ 1 has been partially implemented,
 ○ 1 has not been implemented.

 Findings overview

 ID Severity Vulnerability Retest
 2023-02-10

 MIC_91e451_
 5.1

 CRITICAL Use of spot reserves in DEX pool FIXED

 MIC_91e451_
 5.2

 CRITICAL No access control in withdrawFor function FIXED

 MIC_91e451_
 5.3 CRITICAL

 Unauthorized mint of staking contract
 tokens

 FIXED

 MIC_91e451_
 5.4 MAJOR

 Invalid amount of burnt tokens in staking
 contract

 FIXED

 MIC_91e451_
 5.5 MAJOR

 Theft of rewards and denial of service via
 unauthorized schedule of staking period

 FIXED

 MIC_91e451_
 5.6 MEDIUM

 Instant change of sensitive protocol
 parameters

 FIXED

 MIC_91e451_
 5.7

 MINOR Inability to handle all ERC20 tokens FIXED

 MIC_91e451_
 5.8

 MINOR Inconsistent deposit variables values FIXED

 MIC_91e451_
 5.9

 MINOR Lack of parameters validation FIXED

 MIC_91e451_
 5.10

 MINOR Invalid value of locked amounts variable FIXED

 MIC_91e451_
 5.11

 MINOR Invalid update of current period reward FIXED

 MIC_91e451_ MINOR Invalid value of collected rewards variable FIXED

 4

 composable-security.com

 5.12

 ID Severity Vulnerability Retest
 2023-02-10

 MIC_91e451_
 6.1 INFO

 Do not import whole contract for simple
 calculation

 IMPLEMENTED

 MIC_91e451_
 6.2 INFO

 Remove nonReentrant modifier for the
 functions without external calls

 IMPLEMENTED

 MIC_91e451_
 6.3

 INFO Remove unused inheritance IMPLEMENTED

 MIC_91e451_
 6.4

 INFO Consider using specific solidity version PARTIALLY
 IMPLEMENTED

 MIC_91e451_
 6.5

 INFO Monitor and update draft version contract NOT
 IMPLEMENTED

 MIC_91e451_
 6.6

 INFO Use consistent variable naming IMPLEMENTED

 MIC_91e451_
 6.7

 INFO Make variables’ names self-explanatory IMPLEMENTED

 MIC_91e451_
 6.8

 INFO Favor pull over push IMPLEMENTED

 MIC_91e451_
 6.9 INFO

 Get the block.timestamp directly instead
 of using the view function

 IMPLEMENTED

 5

 composable-security.com

 3. Executive summary
 3.1. Audit results diagram (2022-01-06)

 3.2. Audit results
 The Synco sp. z o.o. engaged Composable Security to review security of
 Milky Ice protocol. Composable Security conducted this assessment over
 half person-week with 2 engineers.

 The scope of the tests included selected contracts from the following
 repository.

 GitHub repository : https://github.com/codefunded/smartcontracts/
 CommitID : 91e45182755567df3a048115f3c202e33864a3d8

 Audit findings:
 ● 3 vulnerabilities with a critical impact on risk were identified. Their

 potential consequences are:
 ○ Minting a huge amount of sMIC tokens and potentially gMIC

 tokens (if the LP token is entitled to vote).
 ○ Users cannot withdraw their staked assets.
 ○ Minting arbitrary amounts of tokens in staking contracts and

 stealing rewards tokens.
 ● 2 vulnerabilities with a major impact on risk were identified. One of

 them was found in a contract that was not in the scope of testing.
 Their potential consequences are:

 6

https://github.com/codefunded/smartcontracts/

 composable-security.com

 ○ Still possessing tokens in the staking contract after
 withdrawing the locked assets (non-collateralized staking
 contract tokens).

 ○ No possibility to set new rewards period (long duration) or
 stealing rewards by setting huge rewardRate passing a huge
 amount of reward.

 ● 1 vulnerability with a medium impact on risk was identified. Its
 potential consequence is:

 ○ Ability to generate a huge amount of sMIC and gMIC tokens.
 ● 6 vulnerabilities with a minor impact on risk were identified.
 ● 9 recommendations have been proposed that can improve overall

 security and help implement best practice.
 ● The multiple important issues detected concern access control

 which needs to be improved.

 Composable Security recommends that Synco sp. z o.o. complete the
 following:

 ● Address all reported issues.
 ● Take care of access control in the project by creating a permission

 matrix. Each role should be clearly defined by its access to features.
 Access control should be verified in a set of unit tests written at the
 beginning, which will help avoid such problems in the future.

 ● Extend unit tests with scenarios that cover detected vulnerabilities
 where possible.

 ● Consider whether the detected vulnerabilities may exist in other
 places (or ongoing projects) that have not been detected during
 engagement.

 7

 composable-security.com

 4. Project details
 4.1. Projects goal
 The Composable Security team focused during this audit on the following:

 ● Perform a tailored threat analysis.
 ● Ensure that smart contract code is written according to security best

 practices.
 ● Identify security issues and potential threats both for Synco sp. z o.o.

 and their users.
 The secondary goal is to improve code clarity and optimize code where
 possible.

 4.2. Agreed scope of tests
 The subjects of the test were selected contracts from the CodeFunded
 repository.
 GitHub repository : https://github.com/codefunded/smartcontracts/
 CommitID : 91e45182755567df3a048115f3c202e33864a3d8

 Files in scope:

 .
 ├── staking
 │ ├── MintStaking.sol
 │ └── Staking.sol
 └── tokens

 ├── DividendToken.sol
 └── MultiERC20WeightedLocker.sol

 Documentation : The architecture overview was briefly described in the
 GitHub repository.

 4.3. Threat analysis
 This section summarizes the potential threats that were identified during
 initial threat modeling performed before the audit. The tests were focused,
 but not limited to, finding security issues that could be exploited to achieve
 these threats.

 Potential attackers goals:
 ● Theft of user's funds.
 ● Lock users’ funds in the contract.
 ● Block the contract, so that others cannot use it.

 8

 composable-security.com

 ● Minting unlimited amounts of tokens.

 Potential scenarios to achieve the indicated attacker’s goals:
 ● Influence or bypass the business logic of the system.
 ● Take advantage of arithmetic errors.
 ● Privilege escalation through incorrect access control to functions or

 badly written modifiers.
 ● Existence of known vulnerabilities (e.g., front-running, re-entrancy).
 ● Design issues.
 ● Excessive power, too much in relation to the declared one.
 ● Unintentional loss of the ability to govern the system.
 ● Poor security against taking over the managing account.
 ● Private key compromise, rug-pull.
 ● Withdrawal of more funds than expected.
 ● Oracle price manipulation.
 ● Impersonating other users.

 4.4. Testing methodology

 Smart contract security review was performed using the following
 methods:

 ● Q&A sessions with the Synco sp. z o.o. and CodeFunded
 development team to thoroughly understand intentions and
 assumptions of the project.

 ● Initial threat modeling to identify key areas and focus on covering
 the most relevant scenarios based on real threats.

 ● Automatic tests using slither .
 ● Custom scripts (e.g. unit tests) to verify scenarios from initial threat

 modeling.
 ● Manual review of the code.

 4.5. Disclaimer
 Smart contract security review IS NOT A SECURITY WARRANTY .

 During the tests, the Composable Security team makes every effort to
 detect any occurring problems and help to address them. However, it is not
 allowed to treat the report as a security certificate and assume that the
 project does not contain any vulnerabilities. Securing smart contract
 platforms is a multi-stage process, starting from threat modeling, through
 development based on best practices, security reviews and formal
 verification, ending with constant monitoring and incident response.

 9

 composable-security.com

 Therefore, we encourage the implementation of security mechanisms at all
 stages of development and maintenance.

 10

 composable-security.com

 5. Findings overview

 ID Severity Vulnerability

 MIC_91e451_
 5.1

 CRITICAL Use of spot reserves in DEX pool

 MIC_91e451_
 5.2

 CRITICAL No access control in withdrawFor function

 MIC_91e451_
 5.3

 CRITICAL Unauthorized mint of staking contract tokens

 MIC_91e451_
 5.4

 MAJOR Invalid amount of burnt tokens in staking contract

 MIC_91e451_
 5.5 MAJOR

 Theft of rewards and denial of service via
 unauthorized schedule of staking period

 MIC_91e451_
 5.6

 MEDIUM Instant change of sensitive protocol parameters

 MIC_91e451_
 5.7

 MINOR Inability to handle all ERC20 tokens

 MIC_91e451_
 5.8

 MINOR Inconsistent deposit variables values

 MIC_91e451_
 5.9

 MINOR Lack of parameters validation

 MIC_91e451_
 5.10

 MINOR Invalid value of locked amounts variable

 MIC_91e451_
 5.11

 MINOR Invalid update of current period reward

 MIC_91e451_
 5.12

 MINOR Invalid value of collected rewards variable

 ID Severity Recommendation

 MIC_91e451_
 6.1

 INFO Do not import whole contract for simple calculation

 MIC_91e451_
 6.2 INFO

 Remove nonReentrant modifier for the functions
 without external calls

 MIC_91e451_
 6.3

 INFO Remove unused inheritance

 11

 composable-security.com

 MIC_91e451_
 6.4

 INFO Consider using specific solidity version

 MIC_91e451_
 6.5

 INFO Monitor and update draft version contract

 MIC_91e451_
 6.6

 INFO Use consistent variable naming

 MIC_91e451_
 6.7

 INFO Make variables’ names self-explanatory

 MIC_91e451_
 6.8

 INFO Favor pull over push

 MIC_91e451_
 6.9 INFO

 Get the block.timestamp directly instead of using
 the view function

 12

 composable-security.com

 6. Vulnerabilities

 6.1. Use of spot reserves in DEX pool

 Status 2023-02-10 FIXED

 The UniswapV2TwapOracle contract (extended Uniswap’s example) has
 been added to the protocol to track the token price in a TWAP manner.
 The prices are semi-automatically updated using the update that can be
 called manually or using Gelato’s task.
 The above-mentioned contract is used by LiquidityValueCalculator
 contract that gets the price from TWAP oracle and calculates the current
 price of an LP token share.
 Such an approach mitigates the risk of using spot prices and protects
 from instant price manipulation within one transaction. It is important to
 remember however, that pools with low liquidity can be manipulated for
 many blocks. It is important to monitor the pool and detect abnormal
 prices.

 Severity
 CRITICAL

 Affected smart contracts
 MultiERC20WeightedLocker

 Description

 The stake function allows to stake LP tokens for pools that contain the MIC
 token. In order to calculate the amount of sMIC tokens to be minted, the
 contract takes the balance of MIC tokens in the DEX pool
 (MultiERC20WeightedLocker#L225 , LiquidityValueCalculator.sol#L27).

 However, the reserves can be easily imbalanced under certain conditions.

 Additionally, there is a typo in the computeLiquidityShareValue function
 call, because the LP token is passed as the argument instead of MIC token
 (MultiERC20WeightedLocker#L228).

 13

https://github.com/codefunded/smartcontracts/blob/29243d5578765a6a3b70e4cbd52be80d4017ef54/contracts/dex/UniswapV2TwapOracle.sol
https://github.com/codefunded/smartcontracts/blob/29243d5578765a6a3b70e4cbd52be80d4017ef54/contracts/dex/LiquidityValueCalculator.sol
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L225
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/dex/LiquidityValueCalculator.sol#L27
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L228

 composable-security.com

 Attack scenario

 The attacker would have to possess a big amount of MIC tokens or there
 should be another DEX pool with MIC token.

 The attackers might take the following steps in turn:
 ● If there is another DEX pool with MIC token, take a flash loan and

 swap the coin for a big amount of MIC .
 ● Sell all MIC tokens in the lockable LP token pool to increase the

 balance of MIC tokens in the pool.
 ● Stake LP tokens in the contract.
 ● The contract gets the inflated balance of MIC tokens in the pool and

 mints twice as much sMIC tokens.
 ● Buy back the MIC tokens sold in the second step.
 ● If the flash loan was taken, pay it back.

 Result of the attack: Minting a huge amount of sMIC tokens and
 potentially gMIC tokens (if the LP token is entitled to vote).

 Recommendation

 ● As it is hard to base the business logic on the spot parameters we
 would recommend storing historical values of price (see
 references) and detect a situation when the DEX pool is
 imbalanced, e.g. by comparing the value of both tokens in the pool.

 ● Alternatively, the protocol could use the Uniswap V3 pool that
 contains TWAP oracle by default and calculate the value of staked
 UniswapV3 position token in MIC token.

 ● In the end, it is important to make sure that the cost of
 imbalancing the pool in the long term (slippage) is greater than
 income (e.g., profits from stake tokens and governance tokens).

 References
 SCSVS V8: Access Control
 https://composablesecurity.github.io/SCSVS/1.2/0x17-V8-Business-Logic.html
 UniswapV2 Price Oracle
 https://docs.uniswap.org/contracts/v2/concepts/core-concepts/oracles

 14

https://composablesecurity.github.io/SCSVS/1.2/0x17-V8-Business-Logic.html
https://docs.uniswap.org/contracts/v2/concepts/core-concepts/oracles

 composable-security.com

 6.2. No access control in withdrawFor function

 Status 2023-02-10 FIXED

 Functions in the Staking contract are protected with a modifier that
 allows them to be called only by addresses with assigned LOCKER_ROLE .
 Functions in the MintStaking contract are protected with a modifier that
 allows them to be called only by the owner.

 Severity
 CRITICAL

 Affected smart contracts
 Staking , MintStaking

 Description
 The withdrawFor function in Staking.sol#L153 and MintStaking.sol#L103
 contracts is an external function that allows users to decrease the staking
 balance of indicated users. There is no access control, thus the function can
 be called by any address.

 Attack scenario
 The vulnerable scenario might include the following steps in turn:

 ● The victim stakes asset using stake function
 (MultiERC20WeightedLocker.sol#L200). This function call stakeFor
 function (Staking.sol#L117 , MintStaking.sol#L89) providing the user's
 address and the staked amount.

 ● Malicious user calls the withdrawFor function (Staking.sol#L153 ,
 MintStaking.sol#L103) giving the victim's address as the argument.

 ● If the victim calls liquidateStaleDeposit function
 (MultiERC20WeightedLocker.sol#L379) or withdraw funcion
 (MultiERC20WeightedLocker.sol#L308) they will revert, making it
 impossible to withdraw assets..

 Result of the attack: Users cannot withdraw their staked assets.

 Recommendation

 ● Limit the access to withdrawFor function only for LOCKER_ROLE
 by adding an Access Control modifier.

 15

https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/Staking.sol
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/MintStaking.sol
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/Staking.sol#L153
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/MintStaking.sol#L103
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L200
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/Staking.sol#L117
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/MintStaking.sol#L89
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/Staking.sol#L153
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/MintStaking.sol#L103
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L379
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L308

 composable-security.com

 References
 SCSVS V2: Access Control
 https://composablesecurity.github.io/SCSVS/1.2/0x11-V2-Access-Control.html

 6.3. Unauthorized mint of staking contract tokens

 Status 2023-02-10 FIXED

 Functions in the MintStaking contract are protected with a modifier that
 allows them to be called only by the owner.

 Severity
 CRITICAL

 Affected smart contracts
 MintStaking , MintableToken

 Description
 The MintStaking contract mints a fixed amount of reward in ERC20 tokens
 owned by the project creator. The reward is paid in MintableToken which
 can only be minted by the staking contract.

 Functions stakeFor (MintStaking.sol#L89) and collectRewardsFor
 (MintStaking.sol#L117) are not protected and anyone can call them.

 Attack scenario
 The attacker might take the following steps in turn:

 ● Call the stakeFor function providing an arbitrary amount as an
 argument (e.g. type(uint256).max) and their address as receiver.

 ● After some time, call the collectRewardFor function which performs
 an external rewardsToken mint of the accrued reward.

 Result of the attack: Minting arbitrary amounts of tokens in staking
 contracts and stealing rewards tokens.

 Recommendation

 Limit the access to MintStaking ’s user facing functions (listed below) by
 adding an Access Control modifier - onlyRole(LOCKER_ROLE) .

 ● stakeFor (MintStaking.sol#L89)
 ● withdrawFor (MintStaking.sol#L103)

 16

https://composablesecurity.github.io/SCSVS/1.2/0x11-V2-Access-Control.html
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/MintStaking.sol
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MintableToken.sol
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/MintStaking.sol#L89
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/MintStaking.sol#L117
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/MintStaking.sol#L89
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/MintStaking.sol#L103

 composable-security.com

 ● collectRewardsFor (MintStaking.sol#L117)

 References
 SCSVS V2: Access control
 https://composablesecurity.github.io/SCSVS/1.2/0x11-V2-Access-Control.html

 6.4. Invalid amount of burnt tokens in staking
 contract

 Status 2023-02-10 FIXED

 The amount has been fixed.

 Severity
 MAJOR

 Affected smart contracts
 MultiERC20WeightedLocker

 Description
 The _removeDeposit function (MultiERC20WeightedLocker.sol#L416)
 updates the contract's state on each deposit, including withdrawing the
 stake from the staking contract.

 However, the amount of withdrawn tokens from staking contract is not the
 same as was minted (when the user was staking the assets -
 MultiERC20WeightedLocker.sol#L258). Instead, the amount of locked
 assets is withdrawn.

 Attack scenario
 The attackers might take the following steps in turn:

 ● Stake LP token and get double the amount of staked tokens
 (MultiERC20WeightedLocker.sol#L235).

 ● Wait until the lock period is finished.
 ● Withdraw the stake.
 ● The staking contract burns the locked amount of lockable asset

 instead of the minted amount and leaves the user with tokens in the
 staking contract.

 17

https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/MintStaking.sol#L117
https://composablesecurity.github.io/SCSVS/1.2/0x11-V2-Access-Control.html
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L416
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L258
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L235

 composable-security.com

 Result of the attack: The attacker after withdrawing the locked assets
 (non-collateralized staking contract tokens) is left with tokens in staking
 contract.

 The amount is equal to the number of minted tokens subtracted by the
 number of locked tokens. This leftover can be used multiple times to
 calculate rewards.

 There is also a theoretical possibility that the number of minted tokens is
 lower than locked tokens and that would cause Denial of Service and not
 allow users to withdraw all deposits.

 Recommendation

 Burn the mintedAmount tokens instead of lockedAmount tokens.

 References
 SCSVS V5: Arithmetic
 https://composablesecurity.github.io/SCSVS/1.2/0x14-V5-Arithmetic.html
 SCSVS V8: Business Logic
 https://composablesecurity.github.io/SCSVS/1.2/0x17-V8-Business-Logic.htm
 l

 6.5. Theft of rewards and denial of service via
 unauthorized schedule of staking period

 Status 2023-02-10 FIXED

 The process to start a new staking period has been divided in two
 phases. The first phase is an authenticated call (only addresses with
 assigned SCHEDULER_ROLE are allowed) that sets the values for the
 next period (finish date and rewards amount).
 The second phase is a call to startNewRewardsPeriod function by anyone
 which verifies that the next period can be started and takes all parameter
 values from the first phase.

 Severity
 MAJOR

 Affected smart contracts
 PeriodStarter

 18

https://composablesecurity.github.io/SCSVS/1.2/0x14-V5-Arithmetic.html
https://composablesecurity.github.io/SCSVS/1.2/0x17-V8-Business-Logic.html
https://composablesecurity.github.io/SCSVS/1.2/0x17-V8-Business-Logic.html
https://github.com/codefunded/smartcontracts/blob/main/contracts/staking/PeriodStarter.sol

 composable-security.com

 Description
 Note : This contract was not in the testing scope, however it has a direct
 impact on the tested contracts. Therefore, during the analysis of its
 operation, a vulnerability was detected in it.

 Although vulnerability was found in it, this contract cannot be considered
 fully tested and is recommended to be included in the scope of future
 testing .

 The Project uses Gelato as a scheduler to call the new staking periods. The
 external startNewRewardsPeriod (PeriodStarter.sol#L98) function can be
 called by anyone and creates a new staking period if the previous one is
 already ended.

 Attack scenario
 The attackers might take the following steps in turn:

 ● Wait for the current scheduled task to be finished or front-run the
 transaction that sets a new rewards period.

 ● Call the startNewRewardsPeriod function providing an arbitrary
 number (e.g. type(uint256).max) as the duration time or the reward
 amount.

 Result of the attack: No possibility to set new rewards period (long
 duration) or stealing rewards by setting huge rewardRate passing a huge
 amount of reward.

 Recommendation

 Limit the access to PeriodStarter contracts’ startNewRewardsPeriod
 function. Make it callable only by the trusted Gelato operators.

 References
 SCSVS V2: Access control
 https://composablesecurity.github.io/SCSVS/1.2/0x11-V2-Access-Control.html

 19

https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/PeriodStarter.sol#L98
https://composablesecurity.github.io/SCSVS/1.2/0x11-V2-Access-Control.html

 composable-security.com

 6.6. Instant change of sensitive protocol
 parameters

 Status 2023-02-10 FIXED

 The team added a Timelock contract and plans to transfer ownership of
 the MultiERC20WeightedLocker and Airdrop contracts to it. The
 deployment script includes this ownership transfer.

 Severity
 MEDIUM

 Affected smart contracts
 MultiERC20WeightedLocker

 Description
 The MultiERC20WeightedLocker contract allows locking of multiple assets
 and stake in multiple staking contracts. Those assets and contracts can be
 added using addLockableAsset (MultiERC20WeightedLocker.sol#L157) and
 addStakingContract (MultiERC20WeightedLocker.sol#L145).

 A malicious asset could be added instantly and the attacker could easily
 mint new sMIC and gMIC tokens without any limits if the owner’s private
 key was leaked.

 Additionally, it is a good practice to increase protocol’s truthfulness to
 protect from centralization and make the protocol not rug-pullable.

 Attack scenario
 The attackers might take the following steps in turn:

 ● Call addStakingContract function that adds a new lockable token
 which is a fake token controlled by the attacker and is entitled to
 vote.

 ● Stake a huge number of fake tokens to get a huge number of sMIC
 and gMIC tokens.

 Result of the attack: Ability to generate a huge amount of sMIC and gMIC
 tokens.

 Recommendation

 20

https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L157
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L145

 composable-security.com

 ● Add timelocks to functions that update sensitive protocol
 parameters (e.g., add new lockable assets, add new staking
 contracts).

 ● However, the staking periods may take longer than the timelock
 period so it is reasonable to allow withdrawal (as emergency) with
 proportional interests or without interests.

 ● In the long-term, use the DAO governance contract to update
 sensitive protocol parameters.

 References
 SCSVS V2: Access Control
 https://composablesecurity.github.io/SCSVS/1.2/0x11-V2-Access-Control.html

 6.7. Inability to handle all ERC20 tokens

 Status 2023-02-10 FIXED

 The team has used SafeERC20 library.

 Severity
 MINOR

 Affected smart contracts
 MultiERC20WeightedLocker , Staking

 Description
 The functions:

 ● stake (MultiERC20WeightedLocker.sol#L200),
 ● withdraw (MultiERC20WeightedLocker.sol#L308),
 ● collectRewardsFor (Staking.sol#L144),

 check the result of the transferFrom or transfer functions calls and revert if
 the false value is returned.

 There are ERC20 tokens that do not return any value on transfers (simply
 reverts on failures) and in their case, all before-mentioned functions would
 revert and would not allow handling such lockable assets.

 The impact on risk has been decreased because the team wants to handle
 only MIC and Uniswap V2 LP tokens.

 21

https://composablesecurity.github.io/SCSVS/1.2/0x11-V2-Access-Control.html
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/Staking.sol
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L200
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L308
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/Staking.sol#L144

 composable-security.com

 Vulnerable scenario
 The vulnerable scenario includes the following steps in turn:

 ● The governance adds a new lockable asset token that does not
 return boolean on transfers (e.g. USDT).

 ● User tries to stake USDT.
 ● The call is reverted and the user loses gas.

 Result of the attack: Denial of service of ERC20 assets that do not return
 true on transfer (e.g. USDT).

 Recommendation

 Use SafeERC20 library to make sure that the return value is true if and
 only if any value is returned.

 References
 SCSVS V14: Communications
 https://composablesecurity.github.io/SCSVS/1.2/0x13-V4-Communications.ht
 ml
 SafeERC20
 https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/con
 tracts/token/ERC20/utils/SafeERC20.sol

 6.8. Inconsistent deposit variables values

 Status 2023-02-10 FIXED

 The team has used the EnumerableSet library.

 Severity
 MINOR

 Affected smart contracts
 MultiERC20WeightedLocker

 Description
 The _addDeposit function updates the contract's state on each deposit.
 Two of the state variables are the list of depositors
 (MultiERC20WeightedLocker.sol#L466) and depositorsAmount
 (MultiERC20WeightedLocker.sol#L467).

 22

https://composablesecurity.github.io/SCSVS/1.2/0x13-V4-Communications.html
https://composablesecurity.github.io/SCSVS/1.2/0x13-V4-Communications.html
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L466
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L467

 composable-security.com

 When the same depositor adds two deposits, they are reflected in the list
 and in the number of depositors twice.

 Vulnerable scenario
 The vulnerable scenario includes the following steps in turn:

 ● A user deposits a stake.
 ● The same user deposits another stake.
 ● Protocol sets the inconsistent values for depositors and

 depositorsAmount variables.

 Result of the attack: Inconsistent values of state parameters, i.e. multiple
 repetitions of the same depositor in the list and inflated number of
 depositors.

 Recommendation

 ● Consider adding new depositors to the set only if they do not exist
 in it (use EnumerableSet library).

 ● Update the number of depositors analogously.

 References
 SCSVS V4: Arithmetic
 https://composablesecurity.github.io/SCSVS/1.2/0x14-V5-Arithmetic.html
 EnumerableSet
 https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/con
 tracts/utils/structs/EnumerableSet.sol

 6.9. Lack of parameters validation

 Status 2023-02-10 FIXED

 The validation has been added.

 Severity
 MINOR

 Affected smart contracts
 MultiERC20WeightedLocker

 23

https://composablesecurity.github.io/SCSVS/1.2/0x14-V5-Arithmetic.html
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/structs/EnumerableSet.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/structs/EnumerableSet.sol
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol

 composable-security.com

 Description
 The addLockableAsset function (MultiERC20WeightedLocker.sol#L157)
 does not validate the parameters of added assets.
 It is reasonable to check whether the reward modifier is greater than 100%
 to make sure that it is profitable. The same validation should be applied to
 lock periods.

 Vulnerable scenario
 The vulnerable scenario includes the following steps in turn:

 ● The governance adds a new lockable asset with unprofitable
 rewards, by mistake.

 ● User stake lockable assets.
 ● When withdrawing, the user loses rewards and some locked assets.

 Result of the attack: Users could use unprofitable staking.

 Recommendation

 Add validation to make sure that rewards are profitable (reward modifiers
 greater than 10000).

 References
 SCSVS V7: Business Logic:
 https://composablesecurity.github.io/SCSVS/1.2/0x17-V8-Business-Logic.htm
 l

 6.10. Invalid value of locked amounts variable

 Status 2023-02-10 FIXED

 The variable has been changed to userLockedAssetAmount to track
 locked amount per asset and per user and the statement has been
 added in _removeDeposit function.

 Severity
 MINOR

 Affected smart contracts
 MultiERC20WeightedLocker

 24

https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L157
https://composablesecurity.github.io/SCSVS/1.2/0x17-V8-Business-Logic.html
https://composablesecurity.github.io/SCSVS/1.2/0x17-V8-Business-Logic.html
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol

 composable-security.com

 Description
 The liquidateStaleDeposit (MultiERC20WeightedLocker.sol#L379) function
 updates the contract's state on each liquidation (e.g. removes deposit), but
 it forgets to decrease the lockedAssetAmount variable.

 Result of the attack: Invalid value of lockedAssetAmount variable which is
 not decreased after stale deposit is liquidated.

 Recommendation

 Add statement that decreases the value:
 lockedAssetAmount[deposit.lockableAssetIndex] -=
 deposit.amountLocked;

 References
 SCSVS V4: Arithmetic
 https://composablesecurity.github.io/SCSVS/1.2/0x14-V5-Arithmetic.html

 6.11. Invalid update of current period reward

 Status 2023-02-10 FIXED

 The new period cannot be started before the previous one is finished.
 Even though the code that incorrectly updated the
 currentPeriodRewardsAmount variable still exists, it is not reachable.

 Severity
 MINOR

 Affected smart contracts
 Staking

 Description
 The _notifyRewardAmount function (Staking.sol#L198) sets
 currentPeriodRewardsAmount variable to _amount while there is a case
 when rewards from the previous period remain and are taken into account
 when calculating the reward rate.

 The currentPeriodRewardsAmount variable does not include the
 remaining rewards.

 25

https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L379
https://composablesecurity.github.io/SCSVS/1.2/0x14-V5-Arithmetic.html
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/Staking.sol
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/Staking.sol#L198

 composable-security.com

 Result of the attack: Invalid value (too small) of the
 currentPeriodRewardsAmount variable.

 Recommendation

 Set the currentPeriodRewardsAmount variable to correct value
 (including remaining rewards if necessary) in both mentioned cases.

 References
 SCSVS V4: Arithmetic
 https://composablesecurity.github.io/SCSVS/1.2/0x14-V5-Arithmetic.html
 SCSVS V8: Business Logic
 https://composablesecurity.github.io/SCSVS/1.2/0x17-V8-Business-Logic.htm
 l

 6.12. Invalid value of collected rewards variable

 Status 2023-02-10 FIXED

 The collectedRewardsInCurrentPeriod variable is increased in the
 collectRewardsFor function.

 Severity
 MINOR

 Affected smart contracts
 Staking.sol

 Description

 The _notifyRewardAmount function (Staking.sol#L198) sets
 collectedRewardsInCurrentPeriod variable to 0 , and this variable is never
 increased on the rewards withdrawal.

 Result of the attack: Invalid value returned by the
 collectedRewardsInCurrentPeriod variable.

 Recommendation

 Increase the collectedRewardsInCurrentPeriod variable with the value of
 collected rewards by the user in the current period in the
 collectRewardsFor function.

 26

https://composablesecurity.github.io/SCSVS/1.2/0x14-V5-Arithmetic.html
https://composablesecurity.github.io/SCSVS/1.2/0x17-V8-Business-Logic.html
https://composablesecurity.github.io/SCSVS/1.2/0x17-V8-Business-Logic.html
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/Staking.sol
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/Staking.sol#L198

 composable-security.com

 References
 SCSVS V8: Business Logic
 https://composablesecurity.github.io/SCSVS/1.2/0x17-V8-Business-Logic.htm
 l

 27

https://composablesecurity.github.io/SCSVS/1.2/0x17-V8-Business-Logic.html
https://composablesecurity.github.io/SCSVS/1.2/0x17-V8-Business-Logic.html
https://composablesecurity.github.io/SCSVS/1.2/0x17-V8-Business-Logic.html

 composable-security.com

 7. Recommendations

 7.1. Do not import whole contracts for simple
 calculations

 Status 2023-02-10 IMPLEMENTED

 Implemented according to the recommendation.

 Severity
 INFO

 Description
 The lastTimeRewardApplicable (Staking.sol#L90) function uses OZ’s Math
 contract to indicate whether the block.timestamp or finishAt variable is
 smaller.

 Recommendation

 Instead of importing the whole contract to calculate the minimum value,
 use ternary operator. It saves 220 gas units during deployment and 61 gas
 per execution.

 References
 SCSVS G11: Code clarity
 https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.
 0/0x100-General/0x111-G11-Code-Clarity.md

 28

https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/Staking.sol#L90
https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.0/0x100-General/0x111-G11-Code-Clarity.md
https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.0/0x100-General/0x111-G11-Code-Clarity.md

 composable-security.com

 7.2. Remove nonReentrant modifier for the
 functions without external calls

 Status 2023-02-10 IMPLEMENTED

 Implemented according to the recommendation.

 Severity
 INFO

 Description
 The Staking contract uses ReentranctGuard’s nonReentrant modifier in
 order to protect against reentrancy. However, without using external calls
 inside the function, the reentrancy attack is not possible.

 Recommendation

 ● Remove the nonReentrant modifier for stakeFor and withdrawFor
 functions.

 Note: If the protocols plans to chose only USDC (and other
 well-known ERC20 tokens) for rewardsToken, it is also
 recommended to remove nonReentrant modifier from
 collectRewardFor (Staking.sol#L137) functions and then remove the
 ReentrancyGuard import (Staking.sol#L92).

 References
 SCSVS G11: Code clarity
 https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.
 0/0x100-General/0x111-G11-Code-Clarity.md

 29

https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/Staking.sol#L137
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/Staking.sol
https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.0/0x100-General/0x111-G11-Code-Clarity.md
https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.0/0x100-General/0x111-G11-Code-Clarity.md

 composable-security.com

 7.3. Remove unused inheritance

 Status 2023-02-10 IMPLEMENTED

 The inheritance for the DividentToken contract has been removed while
 the onlyOwner modifier has been used in the MintStaking contract.

 Severity
 INFO

 Description
 The MintStaking (MintStaking#L20) and DividendToken
 (DividentToken#L15) contracts inherit from Ownable contract. However, the
 onlyOwner modifier is not used in the contracts’ code.

 Recommendation

 Remove unused inheritance.

 References
 SCSVS G11: Code clarity
 https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.
 0/0x100-General/0x111-G11-Code-Clarity.md

 7.4. Consider using the specific solidity version

 Status 2023-02-10 PARTIALLY
 IMPLEMENTED

 The specific version (0.8.17) is used for contracts fully implemented by the
 team, but the pragma is still floating for libraries that were copy-pasted
 and modified (e.g. UniswapV2Library).

 Severity
 INFO

 Description
 Audited code use the following pragma: pragma solidity ̂ 0.8.17;

 30

https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/staking/MintStaking.sol#L20
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/DividendToken.sol#L15
https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.0/0x100-General/0x111-G11-Code-Clarity.md
https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.0/0x100-General/0x111-G11-Code-Clarity.md

 composable-security.com

 It allows the team to compile contracts with various versions of the
 compiler and introduces the risk of using a different version when
 deploying that during testing.

 Recommendation

 Use a specific version of Solidity compiler (latest stable): pragma solidity
 0.8.17;

 References
 SCSVS V1: Architecture, design and threat modeling
 https://github.com/securing/SCSVS/blob/master/1.2/0x10-V1-Architecture-De
 sign-Threat-modelling.md
 Floating pragma SWC-103
 https://swcregistry.io/docs/SWC-103

 7.5. Monitor and update draft version contracts

 Status 2023-02-10 NOT
 IMPLEMENTED

 The ERC20Permit contract has not been updated.

 Severity
 INFO

 Description
 The DividendToken inherits from draft version of ERC20Permit contract.
 Contract drafts may not be exhaustively tested, updated or changed.

 Recommendation

 Use the stable version of ERC20Permit contract if possible. If only the
 draft version of the contract is currently available, monitor it and the
 changes that take place in it to stay up to date

 References
 SCSVS G11: Code clarity
 https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.
 0/0x100-General/0x111-G11-Code-Clarity.md
 EIP-2612

 31

https://github.com/securing/SCSVS/blob/master/1.2/0x10-V1-Architecture-Design-Threat-modelling.md
https://github.com/securing/SCSVS/blob/master/1.2/0x10-V1-Architecture-Design-Threat-modelling.md
https://swcregistry.io/docs/SWC-103
https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.0/0x100-General/0x111-G11-Code-Clarity.md
https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.0/0x100-General/0x111-G11-Code-Clarity.md

 composable-security.com

 https://eips.ethereum.org/EIPS/eip-2612

 7.6. Use consistent variable naming

 Status 2023-02-10 IMPLEMENTED

 Implemented according to the recommendation.

 Severity
 INFO

 Description
 All but one constructor parameters in the DividentToken#L18 contract are
 prefixed with the underscore symbol. It is important to be consistent when
 naming variables to keep the code clear.

 Recommendation

 Use the same naming convention, e.g. add underscore to name function
 parameter.

 References
 SCSVS G11: Code clarity
 https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.
 0/0x100-General/0x111-G11-Code-Clarity.md

 7.7. Make variables’ names self-explanatory

 Status 2023-02-10 IMPLEMENTED

 Implemented according to the recommendation.

 Severity
 INFO

 32

https://eips.ethereum.org/EIPS/eip-2612
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/DividendToken.sol#L18
https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.0/0x100-General/0x111-G11-Code-Clarity.md
https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.0/0x100-General/0x111-G11-Code-Clarity.md

 composable-security.com

 Description
 The userDepositsAmount variable in _addDeposit function
 (MultiERC20WeightedLocker.sol#L465) represents the number of deposits
 while its name suggests the value of deposits.

 Recommendation

 ● Change userDepositsAmount variable name to
 userDepositsCount .

 ● Change depositorsAmount variable name to depositorsCount.

 References
 SCSVS G11: Code clarity
 https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.
 0/0x100-General/0x111-G11-Code-Clarity.md

 7.8. Favor pull over push

 Status 2023-02-10 IMPLEMENTED

 Implemented according to the recommendation.

 Severity
 INFO

 Description
 The withdraw function calls collectRewards function
 (MultiERC20WeightedLocker.sol#L324). It is recommended to favor pulling
 tokens over pushing tokens, which means that if it is possible to delegate
 transfer to another transaction, it should be implemented this way. This
 pattern protects users from blocking the withdrawal of locked assets in a
 situation when collecting rewards (e.g. reward token transfer) reverts.

 Recommendation

 ● Remove automatic collection of rewards from the withdraw
 function.

 ● If you want to allow users to withdraw stake and collect rewards in
 one transaction, create a new function withdrawStakeAndReward
 that will call withdraw and collectRewards functions.

 33

https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L465
https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.0/0x100-General/0x111-G11-Code-Clarity.md
https://github.com/ComposableSecurity/SCSVS/blob/prerelease/SCSVSv2/2.0/0x100-General/0x111-G11-Code-Clarity.md
https://github.com/codefunded/smartcontracts/blob/91e45182755567df3a048115f3c202e33864a3d8/contracts/tokens/MultiERC20WeightedLocker.sol#L324

 composable-security.com

 References
 SCSVS V4: Communications
 https://composablesecurity.github.io/SCSVS/1.2/0x13-V4-Communications.ht
 ml

 7.9. Get the block.timestamp directly instead of
 using the view function

 Status 2023-02-10 IMPLEMENTED

 Implemented according to the recommendation.

 Severity
 INFO

 Description
 The lastTimeRewardApplicable function returns the current
 block.timestamp . This value can be obtained directly, depending on the
 need.

 Recommendation

 Remove the lastTimeRewardApplicable function.

 References
 SCSVS V4: Communications
 https://composablesecurity.github.io/SCSVS/1.2/0x13-V4-Communications.ht
 ml

 34

https://composablesecurity.github.io/SCSVS/1.2/0x13-V4-Communications.html
https://composablesecurity.github.io/SCSVS/1.2/0x13-V4-Communications.html
https://composablesecurity.github.io/SCSVS/1.2/0x13-V4-Communications.html
https://composablesecurity.github.io/SCSVS/1.2/0x13-V4-Communications.html

 composable-security.com

 8. Impact on risk classification
 Risk classification is based on the one developed by OWASP, however it has been
 adapted to the immutable and transparent code nature of smart contracts. The
 Web3 ecosystem forgives much less mistakes than in the case of traditional
 applications, the servers of which can be covered by many layers of security.

 Therefore, the classification is more strict and indicates higher priorities for paying
 attention to security.

 Overall risk severity

 Impact on
 risk

 HIGH CRITICAL MAJOR MEDIUM

 MEDIUM MEDIUM MEDIUM MINOR

 LOW MINOR MINOR INFO

 LOW MEDIUM HIGH

 Exploitation conditions

 OWASP Risk Rating methodology:
 https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

 35

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

 composable-security.com

 9. Long-term best practices
 9.1. Use automated tools to scan your code

 regularly
 It's a good idea to incorporate automated tools (e.g. slither) into the code
 writing process. This will allow basic security issues to be detected and
 addressed at a very early stage.

 9.2. Perform threat modeling
 Before implementing or introducing changes to smart contracts, perform
 threat modeling and think with your team about what can go wrong. Set
 potential targets of the attacker and possible ways to achieve them, keep it
 in mind during implementation to prevent bad design decisions.

 9.3. Use Smart Contract Security Verification
 Standard

 Use proven standards to maintain a high level of security for your contracts.
 Treat individual categories as checklists to verify the security of individual
 components. Expand your unit tests with selected checks from the list to
 be sure when introducing changes that they did not affect the security of
 the project.

 9.4. Discuss audit reports and learn from them
 The best guarantee of security is the constant development of team
 knowledge. To use the audit as effectively as possible, make sure that
 everyone in the team understands the mistakes made. Consider whether
 the detected vulnerabilities may exist in other places, audits always have a
 limited time and the developers know the code best.

 9.5. Monitor your and similar contracts
 Use the tools available on the market to monitor key contracts (e.g. the
 ones where user's tokens are kept). If you have used code from another
 project, monitor their contracts as well and introduce procedures to
 capture information about detected vulnerabilities in their code.

 36

 composable-security.com

 10. Contact

 37

